Iron Acquisition Proteins of Pseudomonas aeruginosa as Potential Vaccine Targets: In Silico Analysis and In Vivo Evaluation of Protective Efficacy of the Hemophore HasAp

铜绿假单胞菌铁吸收蛋白作为潜在疫苗靶点:Hemophore HasAp 保护效果的计算机分析和体内评估

阅读:6
作者:Abdelrahman S Hamad, Eva A Edward, Eman Sheta, Hamida M Aboushleib, Mohammed Bahey-El-Din

Background

Pseudomonas aeruginosa (PA) is a Gram-negative pathogen responsible for fatal nosocomial infections worldwide. Iron is essential for Gram-negative bacteria to establish an infection. Therefore, iron acquisition proteins (IAPs) of bacteria are attractive vaccine targets. Methodology: A "Reverse Vaccinology" approach was employed in the current study. Expression levels of 37 IAPs in various types of PA infections were analyzed in seven previously published studies. The IAP vaccine candidate was selected based on multiple criteria, including a high level of expression, high antigenicity, solubility, and conservation among PA strains, utilizing suitable bioinformatics analysis tools. The selected IAP candidate was recombinantly expressed in Escherichia coli and purified using metal affinity chromatography. It was further evaluated in vivo for protection efficacy. The novel immune adjuvant, naloxone (NAL), was used.

Conclusions

We provided a detailed in silico analysis of IAPs of PA followed by in vivo evaluation of the best IAP, HasAp. Despite the promising in silico results, HasAp did not provide the anticipated vaccine efficacy. HasAp should be further evaluated as a vaccine candidate through varying the immunization regimens, models of infection, and immunoadjuvants. Combination with other IAPs might also improve vaccination efficacy. We also shed light on several highly expressed promising IAPs whose efficacy as vaccine candidates is worthy of further investigation.

Discussion

HasAp antigen met all the in silico selection criteria, being highly antigenic, soluble, and conserved. In addition, it was the most highly expressed IAP in terms of average fold change compared to control. Although HasAp did excel in the in silico evaluation, subcutaneous immunization with recombinant HasAp alone or recombinant HasAp plus NAL (HasAP-NAL) did not provide the expected protection compared to controls. Immunized mice showed a low IgG2a/IgG1 ratio, indicating a T-helper type 2 (Th2)-oriented immune response that is suboptimal for protection against PA infections. Surprisingly, the bacterial count in livers of both NAL- and HasAp-NAL-immunized mice was significantly lower than the count in the HasAp and saline groups. The same trend was observed in kidneys and lungs obtained from these groups, although the difference was not significant. Such protection could be attributed to the enhancement of innate immunity by NAL. Conclusions: We provided a detailed in silico analysis of IAPs of PA followed by in vivo evaluation of the best IAP, HasAp. Despite the promising in silico results, HasAp did not provide the anticipated vaccine efficacy. HasAp should be further evaluated as a vaccine candidate through varying the immunization regimens, models of infection, and immunoadjuvants. Combination with other IAPs might also improve vaccination efficacy. We also shed light on several highly expressed promising IAPs whose efficacy as vaccine candidates is worthy of further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。