Sijunzi Tang improves gefitinib resistance by regulating glutamine metabolism

四君子汤通过调节谷氨酰胺代谢改善吉非替尼耐药性

阅读:8
作者:Zhihong Wang, Taifeng Li, Ruisheng Li, Bo Cao, Shiyuan Wang, Xiaofei Fei, Chunyu Li, Guohui Li

Abstract

Lung cancer is a major health concern and significant barrier to human well-being and social development. Although targeted therapy has shown remarkable progress in the treatment of lung cancer, the emergence of drug resistance has limited its clinical efficacy. Sijunzi Tang (SJZ) is a classical Chinese herbal formula known for tonifying qi and nourishing the lungs, has been recognized for its potential in lung cancer management. However, the underlying mechanism of its combined use with anti-cancer drugs remains unclear. Here, we investigated the anti-lung cancer efficacy and underlying mechanisms of the combination of gefitinib and SJZ in gefitinib-resistant human lung adenocarcinoma cells (PC-9/GR). We conducted in vitro and in vivo experiments using histopathology and targeted metabolomics approaches. Our results demonstrated that the combination of SJZ and gefitinib exhibited synergistic effects on tumor growth inhibition in PC-9/GR-bearing nude mice. Notably, the co-administration of SJZ and gefitinib synergistically promoted tumor cell apoptosis, potentially through the regulation of BAX and BCL-2 expression. Immunohistochemistry and western blot analysis found down-regulation of GLS, GS, and SLC1A5 expression in the co-administration group compared to the control and the individual treatment groups. Targeted metabolomics revealed significant alterations in the plasma glutamine metabolic markers glutamine, alanine, succinate, glutamate, and pyruvate. Of the glutamine metabolism markers measured in tumor tissues, glutamine and pyruvate demonstrated significant differences across the treatment groups. These findings suggest that administration of SJZ improves gefitinib resistance in the treatment of lung cancer without toxic effects. Moreover, SJZ may affect glutamine metabolism by regulating key targets involved in glutamine metabolism (SLC1A5, GLS, and GS) and modulating the levels of related metabolic markers, ultimately reducing gefitinib resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。