Functional and computational identification of a rescue mutation near the active site of an mRNA methyltransferase

mRNA 甲基转移酶活性位点附近的挽救突变的功能和计算识别

阅读:9
作者:Pierre-Yves Colin, Paul A Dalby

Abstract

RNA-based drugs are an emerging class of therapeutics combining the immense potential of DNA gene-therapy with the absence of genome integration-associated risks. While the synthesis of such molecules is feasible, large scale in vitro production of humanised mRNA remains a biochemical and economical challenge. Human mRNAs possess two post-transcriptional modifications at their 5' end: an inverted methylated guanosine and a unique 2'O-methylation on the ribose of the penultimate nucleotide. One strategy to precisely methylate the 2' oxygen is to use viral mRNA methyltransferases that have evolved to escape the host's cell immunity response following virus infection. However, these enzymes are ill-adapted to industrial processes and suffer from low turnovers. We have investigated the effects of homologous and orthologous active-site mutations on both stability and transferase activity, and identified new functional motifs in the interaction network surrounding the catalytic lysine. Our findings suggest that despite their low catalytic efficiency, the active-sites of viral mRNA methyltransferases have low mutational plasticity, while mutations in a defined third shell around the active site have strong effects on folding, stability and activity in the variant enzymes, mostly via network-mediated effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。