Mathematical Modelling Using Predictive Biomarkers for the Outcome of Canine Leishmaniasis upon Chemotherapy

使用预测生物标志物对犬利什曼病化疗结果进行数学建模

阅读:9
作者:Rafaela de Sousa Gonçalves, Flaviane Alves de Pinho, Ricardo Jorge Dinis-Oliveira, Rui Azevedo, Joana Gaifem, Daniela Farias Larangeira, Eduardo Milton Ramos-Sanchez, Hiro Goto, Ricardo Silvestre, Stella Maria Barrouin-Melo

Abstract

Prediction parameters of possible outcomes of canine leishmaniasis (CanL) therapy might help with therapeutic decisions and animal health care. Here, we aimed to develop a diagnostic method with predictive value by analyzing two groups of dogs with CanL, those that exhibited a decrease in parasite load upon antiparasitic treatment (group: responders) and those that maintained high parasite load despite the treatment (group: non-responders). The parameters analyzed were parasitic load determined by q-PCR, hemogram, serum biochemistry and immune system-related gene expression signature. A mathematical model was applied to the analysis of these parameters to predict how efficient their response to therapy would be. Responder dogs restored hematological and biochemical parameters to the reference values and exhibited a Th1 cell activation profile with a linear tendency to reach mild clinical alteration stages. Differently, non-responders developed a mixed Th1/Th2 response and exhibited markers of liver and kidney injury. Erythrocyte counts and serum phosphorus were identified as predictive markers of therapeutic response at an early period of assessment of CanL. The results presented in this study are highly encouraging and may represent a new paradigm for future assistance to clinicians to interfere precociously in the therapeutic approach, with a more precise definition in the patient's prognosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。