Selective multi-nanosoldering for fabrication of advanced solution-processed micro/nanoscale metal grid structures

选择性多纳米焊接用于制造先进的溶液处理的微/纳米级金属网格结构

阅读:4
作者:Y S Oh, J Lee, D Y Choi, H Lee, K Kang, S Yoo, I Park, H J Sung

Abstract

Solution-processed metal grid transparent conductors with low sheet resistance, high optical transmittance and good mechanical flexibility have great potential for use in flexible optoelectronic devices. However, there are still remaining challenges to improve optoelectrical properties and electromechanical stability of the metallic structures due to random loose packings of nanoparticles and the existence of many pores. Here we introduce a selective multi-nanosoldering method to generate robust metallic layers on the thin metal grid structures (< a thickness of 200 nm), which are generated via self-pining assisted direct inking of silver ions. The selective multi-nanosoldering leads to lowering the sheet resistance of the metal grid transparent conductors, while keeping the optical transmittance constant. Also, it reinforces the electromechanical stability of flexible metal grid transparent conductors against a small bending radius or a repeated loading. Finally, organic light-emitting diodes based on the flexible metal grid transparent conductors are demonstrated. Our approach can open a new route to enhance the functionality of metallic structures fabricated using a variety of solution-processed metal patterning methods for next-generation optoelectronic and micro/nanoelectronic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。