Chemotaxis of human induced pluripotent stem cell-derived endothelial cells

人类诱导性多能干细胞衍生内皮细胞的趋化性

阅读:5
作者:Ngan F Huang, Ruby E Dewi, Janet Okogbaa, Jerry C Lee, Abdul Jalilrufaihah, Sarah C Heilshorn, John P Cooke

Abstract

This study examined the homing capacity of human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) and their response to chemotactic gradients of stromal derived factor-1α (SDF). We have previously shown that EC derived from murine pluripotent stem cells can home to the ischemic hindlimb of the mouse. In the current study, we were interested to understand if ECs derived from human induced pluripotent stem cells are capable of homing. The homing capacity of iPSC-ECs was assessed after systemic delivery into immunodeficient mice with unilateral hindlimb ischemia. Furthermore, the iPSC-ECs were evaluated for their expression of CXCR4 and their ability to respond to SDF chemotactic gradients in vitro. Upon systemic delivery, the iPSC-ECs transiently localized to the lungs but did not home to the ischemic limb over the course of 14 days. To understand the mechanism of the lack of homing, the expression levels of the homing receptor, CXCR4, was examined at the transcriptional and protein levels. Furthermore, their ability to migrate in response to chemokines was assessed using microfluidic and scratch assays. Unlike ECs derived from syngeneic mouse pluripotent stem cells, human iPSC-ECs do not home to the ischemic mouse hindlimb. This lack of functional homing may represent an impairment of interspecies cellular communication or a difference in the differentiation state of the human iPSC-ECs. These results may have important implications in therapeutic delivery of iPSC-ECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。