Chk1 KA1 domain auto-phosphorylation stimulates biological activity and is linked to rapid proteasomal degradation

Chk1 KA1 结构域自身磷酸化刺激生物活性并与蛋白酶体快速降解有关

阅读:6
作者:Eun-Yeung Gong, Beatriz Hernández, Jessica Hernández Nielsen, Veronique A J Smits, Raimundo Freire, David A Gillespie

Abstract

The DNA damage-activated protein kinase Chk1 is known to undergo auto-phosphorylation, however the sites and functional significance of this modification remain poorly understood. We have identified two novel Chk1 auto-phosphorylation sites, threonines 378 and 382 (T378/382), located in a highly conserved motif within the C-terminal Kinase Associated 1 (KA1) domain. T378/382 occur within optimal consensus Chk1 phosphorylation motifs and substitution with phospho-mimetic aspartic acid residues results in a constitutively active mutant Chk1 kinase (Chk1-DD) that arrests cell cycle progression in G2 phase of the cell cycle in the absence of DNA damage. Remarkably, the mutant Chk1-DD protein is also subject to very rapid proteasomal degradation, with a half-life approximately one tenth that of wild-type Chk1. Consistent with this, T378/T382 auto-phosphorylation also accelerates the proteasomal degradation of constitutively active Chk1 KA1 domain structural mutants. T378/382 auto-phosphorylation and accelerated degradation of wild-type Chk1 occurs at low levels during unperturbed growth, but surprisingly, is not augmented in response to genotoxic stress. Taken together, these observations demonstrate that Chk1 T378/T382 auto-phosphorylation within the KA1 domain is linked to kinase activation and rapid proteasomal degradation, and suggest a non-canonical mechanism of regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。