Growth arrest-specific protein 2 (GAS2) interacts with CXCR4 to promote T-cell leukemogenesis partially via c-MYC

生长停滞特异性蛋白 2 (GAS2) 与 CXCR4 相互作用,部分通过 c-MYC 促进 T 细胞白血病生成

阅读:6
作者:Wenjuan Ma, Yan Wan, Jianxiang Zhang, Jianan Yao, Yifei Wang, Jinchang Lu, Hong Liu, Xiaorui Huang, Xiuyan Zhang, Haixia Zhou, Yulong He, Depei Wu, Jianrong Wang, Yun Zhao

Abstract

Although growth arrest-specific protein 2 (GAS2) promotes the growth of T-cell acute lymphoblastic leukemia (T-ALL) cells in culture, the effect of GAS2 on T-cell leukemogenesis has not been studied, and the mechanism remains unclear. In the present study, xenograft studies showed that GAS2 silencing impaired T-cell leukemogenesis and decreased leukemic cell infiltration. Mechanistically, GAS2 regulated the protein expression of C-X-C chemokine receptor type 4 (CXCR4) rather than its transcript expression. Immunoprecipitation revealed that GAS2 interacted with CXCR4, and confocal analysis showed that GAS2 was partially co-expressed with CXCR4, which provided a strong molecular basis for GAS2 to regulate CXCR4 expression. Importantly, CXCR4 overexpression alleviated the inhibitory effect of GAS2 silencing on the growth and migration of T-ALL cells. Moreover, GAS2 or CXCR4 silencing inhibited the expression of NOTCH1 and c-MYC. Forced expression of c-MYC rescued the growth suppression induced by GAS2 or CXCR4 silencing. Meanwhile, GAS2 deficiency, specifically in blood cells, had a mild effect on normal hematopoiesis, including T-cell development, and GAS2 silencing did not affect the growth of normal human CD3+ or CD34+ cells. Overall, our data indicate that GAS2 promotes T-cell leukemogenesis through its interaction with CXCR4 to activate NOTCH1/c-MYC, whereas impaired GAS2 expression has a mild effect on normal hematopoiesis. Therefore, our study suggests that targeting the GAS2/CXCR4 axis is a potential therapeutic strategy for T-ALL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。