Characterization of a Murine Model for Encephalitozoon hellem Infection after Dexamethasone Immunosuppression

地塞米松免疫抑制后脑炎微孢子虫感染小鼠模型的特征分析

阅读:2
作者:Guozhen An ,Yunlin Tang ,Biying Mo ,Maoshuang Ran ,Xiao He ,Jialing Bao ,Zeyang Zhou

Abstract

Background: Encephalitozoon hellem (E. hellem) belongs to a group of opportunistic pathogens called microsporidia. Microsporidia infection symptoms vary and include diarrhea, ocular disorders and systemic inflammations. Traditionally, immunodeficient animals were used to study microsporidia infection. To overcome the difficulties in maintenance and operation using immunodeficient mice, and to better mimic natural occurring microsporidia infection, this study aims to develop a pharmacologically immunosuppressed murine model of E. hellem infection. Methods: Wild-type C57BL/6 mice were immunosuppressed with dexamethasone (Dex) and then E. hellem spores were inoculated into the mice intraperitoneally. Control groups were the Dex-immunosuppressed but noninoculated mice, and the Dex-immunosuppressed then lipopolysaccharide (LPS)-treated mice. Mice body weights were monitored and all animals were sacrificed at the 15th day after inoculation. Tissue fragments and immune cells were collected and processed. Results: Histopathological analysis demonstrated that E. hellem inoculation resulted in a disseminated nonlethal infection. Interestingly, E. hellem infection desensitized the innate immunity of the host, as shown by cytokine expressions and dendritic cell maturation. We also found that E. hellem infection greatly altered the composition of host gut microbiota. (4) Conclusions: Dex-immunosuppressed mice provide a useful tool for study microsporidiosis and the interactions between microsporidia and host immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。