High-resolution temporal response patterns to influenza vaccine reveal a distinct human plasma cell gene signature

流感疫苗的高分辨率时间反应模式揭示了独特的人类浆细胞基因特征

阅读:6
作者:Alicia D Henn, Shuang Wu, Xing Qiu, Melissa Ruda, Michael Stover, Hongmei Yang, Zhiping Liu, Stephen L Welle, Jeanne Holden-Wiltse, Hulin Wu, Martin S Zand

Abstract

To identify sources of inter-subject variation in vaccine responses, we performed high-frequency sampling of human peripheral blood cells post-vaccination, followed by a novel systems biology analysis. Functional principal component analysis was used to examine time varying B cell vaccine responses. In subjects vaccinated within the previous three years, 90% of transcriptome variation was explained by a single subject-specific mathematical pattern. Within individual vaccine response patterns, a common subset of 742 genes was strongly correlated with migrating plasma cells. Of these, 366 genes were associated with human plasmablasts differentiating in vitro. Additionally, subject-specific temporal transcriptome patterns in peripheral blood mononuclear cells identified migration of myeloid/dendritic cell lineage cells one day after vaccination. Upstream analyses of transcriptome changes suggested both shared and subject-specific transcription groups underlying larger patterns. With robust statistical methods, time-varying response characteristics of individual subjects were effectively captured along with a shared plasma cell gene signature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。