NVP-BEZ235-induced autophagy as a potential therapeutic approach for multiple myeloma

NVP-BEZ235 诱导自噬作为多发性骨髓瘤的潜在治疗方法

阅读:4
作者:Yongyong Ma, Zhouxiang Jin, Kang Yu, Qifa Liu

Background

The PI3K/Akt/mTOR pathway is constitutively activated in human multiple myeloma (MM) cell lines and in freshly isolated plasmocytes from patients with MM. The mTOR signaling pathway has been designated an attractive anti-tumor target in multiple myeloma. NVP-BEZ235, a novel, dual class I PI3K/mTOR inhibitor, is an imidazoquinoline derivative. NVP-BEZ235 binds to the ATP-binding clefts of PI3K and mTOR kinase, thereby inhibiting their activities. Increasing evidence shows that NVP-BEZ235 is able to effectively and specifically reverse the hyperactivation of the PI3K/mTOR pathway, resulting not only in potent antiproliferative and antitumor activities in a broad range of cancer cell lines and experimental tumors but also in autophagy. Method: The antitumor, apoptosis, and autophagy effects of NVP-BEZ235 were measured in three MM cell lines, two leukemia cell lines, and primary CD138+ myeloma cells from MM patients and nude mouse MM models. In addition, the relationships between autophagy, cell death and apoptosis induced by NVP-BEZ235 were analyzed in MM cells. Furthermore, we explored the mechanism of autophagy induced by NVP-BEZ235 in MM cells.

Conclusions

In this study, NVP-BEZ235 showed the strongest antitumor and autophagy induction activity. Moreover, the mechanism involved the mTOR2-Akt-FOXO3a-BNIP3 pathway. Our study lays a theoretical foundation for NVP-BEZ235 clinical application.

Results

NVP-BEZ235 inhibited proliferation and induced apoptosis and autophagy in MM cells and in primary MM cells from patients and nude mouse MM models. Autophagy played an important role in the cell death and apoptosis of MM cell lines induced by NVP-BEZ235, and the mechanism involved the mTOR2-Akt-FOXO3a-BNIP3 pathway. Conclusions: In this study, NVP-BEZ235 showed the strongest antitumor and autophagy induction activity. Moreover, the mechanism involved the mTOR2-Akt-FOXO3a-BNIP3 pathway. Our study lays a theoretical foundation for NVP-BEZ235 clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。