Aim of the study
To elucidate therapeutic effect of PH for CI as well as its underlying mechanisms with LPS-treated mice model.
Conclusions
PH could alleviate CI by suppressing the secretion of pro-inflammatory cytokines and mitigating astrocyte activity by restraining microglia's activation in hippocampus, further facilitating neurogenesis and proliferation, thereby enhancing pre-synaptic protein. This study highlighted on the clinical application of PH, which might promote the use of phytomedicine in CI patients.
Results
The results revealed that LPS contributed to CI, and PH or piracetam treatment significantly ameliorated CI in MWM test. LPS contributed to increasing expressions of TNF-α and IL-1β in serum and hippocampus, which both reversed by PH or piracetam. PH or piracetam could inhibit the activation of glial cells including microglia and astrocyte in the hippocampus in LPS-induced CI model. The mRNA sequencing and RT-PCR results showed that LPS significantly increased the gene expression of TREM2, which was reversed by PH. The alteration of TREM2 expression was the most significant among the 10 genes (TREM2, Slc24a2, Ptch2, Gck, Il1rapl1, Cadps2, Btbd11, Secisbp2l, Tenm3 and Prepl) in hippocampus. Protein results showed that LPS upregulated the expressions of TREM2 and its related proteins including DAP12, spleen tyrosine kinase (SYK) phosphorylation and ADAM 10, which were all reversed by PH or piracetam in hippocampus. Furthermore, LPS was capable of reducing the expression of BrdU and DCX co-labeled positive cells in hippocampal dentate gyrus (DG), which was reversed only by PH. Moreover, PH or piracetam treatment significantly increased the expression of Ki67 and DCX co-labeled positive cells in hippocampal DG. The expression of synapsin1 was obviously decreased by LPS and was significantly reversed by PH or piracetam. Conclusions: PH could alleviate CI by suppressing the secretion of pro-inflammatory cytokines and mitigating astrocyte activity by restraining microglia's activation in hippocampus, further facilitating neurogenesis and proliferation, thereby enhancing pre-synaptic protein. This study highlighted on the clinical application of PH, which might promote the use of phytomedicine in CI patients.
