Comprehensive Response of Rhodosporidium kratochvilovae to Glucose Starvation: A Transcriptomics-Based Analysis

Rhodosporidium kratochvilovae 对葡萄糖饥饿的综合反应:基于转录组学的分析

阅读:8
作者:Meixia He, Rui Guo, Gongshui Chen, Chao Xiong, Xiaoxia Yang, Yunlin Wei, Yuan Chen, Jingwen Qiu, Qi Zhang

Abstract

Microorganisms adopt diverse mechanisms to adapt to fluctuations of nutrients. Glucose is the preferred carbon and energy source for yeast. Yeast cells have developed many strategies to protect themselves from the negative impact of glucose starvation. Studies have indicated a significant increase of carotenoids in red yeast under glucose starvation. However, their regulatory mechanism is still unclear. In this study, we investigated the regulatory mechanism of carotenoid biosynthesis in Rhodosporidium kratochvilovae YM25235 under glucose starvation. More intracellular reactive oxygen species (ROS) was produced when glucose was exhausted. Enzymatic and non-enzymatic (mainly carotenoids) antioxidant systems in YM25235 were induced to protect cells from ROS-related damage. Transcriptome analysis revealed massive gene expression rearrangement in YM25235 under glucose starvation, leading to alterations in alternative carbon metabolic pathways. Some potential pathways for acetyl-CoA and then carotenoid biosynthesis, including fatty acid β-oxidation, amino acid metabolism, and pyruvate metabolism, were significantly enriched in KEGG analysis. Overexpression of the fatty acyl-CoA oxidase gene (RkACOX2), the first key rate-limiting enzyme of peroxisomal fatty acid β-oxidation, demonstrated that fatty acid β-oxidation could increase the acetyl-CoA and carotenoid concentration in YM25235. These findings contribute to a better understanding of the overall response of red yeast to glucose starvation and the regulatory mechanisms governing carotenoid biosynthesis under glucose starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。