Scalable production and purification of engineered ARRDC1-mediated microvesicles in a HEK293 suspension cell system

在HEK293悬浮细胞系统中可扩展地生产和纯化工程化的ARRDC1介导的微囊泡

阅读:5
作者:Kristin Luther #, Ali Navaei #, Leah Gens, Carson Semple, Pearl Moharil, Ilaria Passalacqua, Komal Vyas, Qiyu Wang, Shu-Lin Liu, Lucy Sun, Senthil Ramaswamy, Davide Zocco, Joseph F Nabhan

Abstract

Engineering of human ARRDC1-mediated microvesicles (ARMMs) as non-viral vehicles for delivery of gene therapies bears the potential to enable novel therapeutic paradigms. We evaluated two scalable strategies to generate ARMMs loaded with protein cargo, by transient transfection or stable cell line-based production. The upstream ARMMs production processes utilized a suspension-adapted HEK293-derived line, termed 5B8. 5B8 cells yielded robust production of ARMMs after transient transfection with the ARMMs loading construct or using a stable cell line containing a transgene that encodes the ARMMs loading cassette, in shake flasks or a stirred tank bioreactor, respectively. ARMMs were purified by ultracentrifugation (small scale) or a combination of TFF and AEX (scalable production). Both purification methods produced comparable ARMMs, in terms of size and payload incorporation. Single particle analysis showed approximately 50% were payload-containing ARMMs. Additionally, an in vivo study was conducted in mice to investigate the half-life and biodistribution of ARMMs administered intravenously. ARMMs showed rapid biodistribution predominantly to the spleen and liver and, to a lesser extent, kidneys, and lungs. The half-life of ARMMs in plasma was 6 ± 0.4 min. Altogether, this work advances knowledge on scale-up of engineered cell-derived vesicles for future in vivo delivery of therapeutic molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。