Advancing high-throughput combinatorial aging studies of hybrid perovskite thin films via precise automated characterization methods and machine learning assisted analysis

通过精确的自动表征方法和机器学习辅助分析推进混合钙钛矿薄膜的高通量组合老化研究

阅读:10
作者:Alexander Wieczorek, Austin G Kuba, Jan Sommerhäuser, Luis Nicklaus Caceres, Christian M Wolff, Sebastian Siol

Abstract

To optimize material stability, automated high-throughput workflows are of increasing interest. However, many of those workflows either employ synthesis techniques not suitable for large-area depositions or are carried out in ambient conditions, which limits the transferability of the results. While combinatorial approaches based on vapour-based depositions are inherently scalable, their potential for controlled stability assessments has yet to be exploited. Based on MAPbI3 thin films as a prototypical system, we demonstrate a combinatorial inert-gas workflow to study intrinsic materials degradation, closely resembling conditions in encapsulated devices. Specifically, we probe the stability of MAPbI3 thin films with varying residual PbI2 content. A comprehensive set of automated characterization techniques is used to investigate the structure and phase constitution of pristine and aged thin films. A custom-designed in situ UV-Vis aging setup is used for real-time photospectroscopy measurements of the material libraries under relevant aging conditions, such as heat or light-bias exposure. These measurements are used to gain insights into the degradation kinetics, which can be linked to intrinsic degradation processes such as autocatalytic decomposition. Despite scattering effects, which complicate the conventional interpretation of in situ UV-Vis results, we demonstrate how a machine learning model trained on the comprehensive characterization data before and after the aging process can link changes in the optical spectra to phase changes during aging. Consequently, this approach does not only enable semi-quantitative comparisons of material stability but also provides detailed insights into the underlying degradation processes which are otherwise mostly reported for investigations on single samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。