Revolutionizing fracture fixation in diabetic and non-diabetic rats: High mobility group box 1-based coating for enhanced osseointegration

糖尿病和非糖尿病大鼠骨折固定的革命性变化:基于高迁移率族 B1 的涂层可增强骨整合

阅读:9
作者:Alexandra Arteaga, Claudia Cristina Biguetti, BhuvanaLakkasetter Chandrashekar, Javier La Fontaine, Danieli C Rodrigues

Abstract

Chronic inflammation and hyperglycemia in diabetic patients increase the risk of implant failure and impaired fracture healing. We previously developed and characterized a titanium (Ti) coating strategy using an imidazolium-based ionic liquid (IonL) with a fully reduced, non-oxidizable High Mobility Group Box 1 (HMGB1) isoform (Ti-IonL-HMGB1) to immunomodulate tissue healing. In this study, we used an open reduction fracture fixation (ORIF) model in non-diabetic (ND) and diabetic (D) rats to further investigate the effectiveness of this Ti-IonL-HMGB1 coating on orthopedic applications. Ninety male Lewis rats (12-15 weeks) were divided into D (n = 45) and ND (n = 45) groups that were distributed into three subgroups based on the type of local treatment received: Ti (uncoated Ti), Ti-IonL, and Ti-IonL-HMGB1 implants. Fracture healing and osseointegration were evaluated using microtomographic, histological, and immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), Runt-related transcription factor 2 (RUNX2), and HMGB1 markers at 2, 10, and 21 days post-ORIF. Scanning Electron Microscopy verified the coating stability after placement. Microtomographic and histological analysis demonstrated increased fracture healing and osseointegration for ND rats in all treatment groups at 10 days, with impaired healing for D rats. Immunohistochemical analysis exhibited elevated PCNA+ and RUNX2+ cells for D animals treated with Ti-IonL-HMGB1 at 21 days compared to all other groups. The immunohistochemical marker HMGB1 was elevated at all time points for D animals in comparison to ND animals, yet was lowered for D tissues near the Ti-IonL-HMGB1 treated implant. Improved osseous healing was demonstrated in D animals with Ti-IonL-HMGB1 treatment by 21 days, compared to D animals with other treatments. To the best of our knowledge, this is the first study analyzing Ti-IonL-HMGB1 implantation in an injury site through ORIF procedures in ND and D rats. This surface approach has potential for improving implanted biomaterials in diabetic environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。