Evaluating the "wrong-way-round" electrospray ionization of antiretroviral drugs for improved detection sensitivity

评估抗逆转录病毒药物的“错误方向”电喷雾电离以提高检测灵敏度

阅读:8
作者:Pieter Venter, Rianita van Onselen

Abstract

The presence of antiretroviral drugs (ARVDs) in the aquatic environment poses a significant health risk to the ecosystem. The dilution of these compounds during wastewater treatment processes, followed by discharge into the environment, results in extremely low concentrations in the range of ng/L. Therefore, to enable detection of these low concentrations, it is important to determine the most efficient electrospray ionization (ESI) mode using the right mobile phase modifier and to establish a selective extraction procedure. In this study, we compared the ESI intensity in the positive and negative mode using both formic acid (FA) and ammonium hydroxide (NH4OH) as mobile phase modifiers. The results revealed a phenomenon known as the "wrong-way-round" (WWR) ESI in which high intensity [M + H]+ ions were detected under basic conditions using NH4OH as modifier and, similarly, high intensity [M-H]- ions were detected under acidic conditions using FA as modifier. Furthermore, mixed-mode strong cation (MCX) and mixed-mode strong anion (MAX) exchange sorbents were evaluated for extraction recoveries, which yielded extraction recoveries between 60 and 100%. Finally, the recoveries obtained using mixed-mode ion exchange sorbents compared to ion production during the ESI process provide evidence that ions produced in solution do not necessarily reflect the ions that are produced during the ESI process. Based on the results of this study, it is recommended to evaluate the optimal ionization mode under basic and acidic conditions, instead of defaulting to the use of acidic modifiers with positive ion detection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。