Plantamajoside alleviates hypoxia-reoxygenation injury through integrin-linked kinase/c-Src/Akt and the mitochondrial apoptosis signaling pathways in H9c2 myocardial cells

车前草苷通过整合素连接激酶/c-Src/Akt和线粒体凋亡信号通路减轻H9c2心肌细胞缺氧复氧损伤

阅读:5
作者:Yuying Du #, Jia Li #, Chao Cai, Fanying Gong, Guoliang Zhou, Fang Liu, Qiang Wu, Fuming Liu

Abstract

Myocardial ischemia-reperfusion injury(MIRI) is one of the common complications after myocardial infarction surgery, Oxidative stress is among the main mechanisms of myocardial ischemia-reperfusion injury. Plantamajoside (PMS), the main effective ingredient in the genus Plantain, has been reported to possess an antioxidation, anti-inflammatory and anti-apoptosis role. However, whether PMS can attenuate myocardial ischemia-reperfusion injury is not yet known. Herein, we explored the effects of PMS on hypoxia-reoxygenation (H/R) injury in H9c2 cardiomyocytes and the underling molecular mechanisms of the treatment. Network pharmacological analysis screened the top 31 key genes in the treatment of MIRI disease treated with PMS, and the result of molecular docking further illustrated the roles that the PMS play in the treatment of MIRI through its interference with integrin-linked kinase (ILK) target protein. PMS was not cytotoxic in the concentration range of 5-40 μM and increased cell survival after H/R injury in a concentration-dependent manner without affecting proliferation or growth. PMS significantly reduced the levels of lactate dehydrogenase, malonic dialdehyde, reactive oxygen species and cell apoptosis, and increased soperoxide dismutase activity compared with those of the H/R injury group. PMS promoted the protein and mRNA expression of ILK and Bcl-2, the protein expression of p-Akt, and reduced the protein and mRNA expression of Bax, Caspase-3, and Cytochrome c, the protein expression of p-c-Src. PMS has protective effects against H/R injury in H9c2 cells, and its protective mechanism may be related to reactive oxygen species clearance, activation of the ILK/c-Src/Akt pathway and inhibition of the mitochondrial apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。