Protective effect and mechanism of γ-secretase inhibitor on myocardial injury in sepsis rats

γ-分泌酶抑制剂对脓毒症大鼠心肌损伤的保护作用及机制

阅读:5
作者:Jingyun Fang, Yuming Zhou

Conclusion

γ secretase inhibitors have clearly protective effects on cardiomyocytes, and the mechanism may be associated with Notch blocking and RORγt expression, which inhibit immune damage induced by abnormal activation of Th17.

Methods

Thirty-six healthy male Wistar rats were randomly and equally divided into control groups, model group and intervention group. The model group and the intervention group were treated with ligation of cecum and perforation to build sepsis model, and the intervention group received intraperitoneal injection of GSI II (DAPT). Serum levels of Troponin T (cTnT), creatine kinase isoenzyme (CK-MB) and interleukin-17 were measured by ELISA. The Th17 cell percentage in peripheral blood mononuclear cells in CD4+ cells was determined by flow cytometry, and myocardial tissue cells in each group were measured by TUNEL. The mRNA of RORγt was measured by real-time quantitative PCR, and the protein expressions of Notch1, Hes1 and HIF-α in myocardial tissue were measured by Western blot.

Objective

This study aimed to investigate the mechanism of γ-secretase inhibitor (GSI) in myocardial repair in septic rats.

Results

The cTnT, CK-MB, Th17 and Th17/CD4+ levels in the model group and the intervention group were remarkably higher than those in the control group (P<0.05), while those in the intervention group were remarkably lower than those in the model group (P<0.05). Myocardial apoptosis rate, myocardial RORγt mRNA and protein expressions of Notch1, Hes1 and HIF-α in the model group and the intervention group were obviously higher than those in control group (P<0.05), and those in the intervention group were obvious lower than those in the model group (P<0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。