METTL3 Mediates Epithelial-Mesenchymal Transition by Modulating FOXO1 mRNA N6 -Methyladenosine-Dependent YTHDF2 Binding: A Novel Mechanism of Radiation-Induced Lung Injury

METTL3 通过调节 FOXO1 mRNA N6-甲基腺苷依赖性 YTHDF2 结合来介导上皮-间质转化:一种放射性肺损伤的新机制

阅读:6
作者:Yang Feng, Ping Yuan, Hongjuan Guo, Liming Gu, Zhao Yang, Jian Wang, Wei Zhu, Qi Zhang, Jianping Cao, Lili Wang, Yang Jiao

Abstract

The biological roles of epithelial-mesenchymal transition (EMT) in the pathogenesis of radiation-induced lung injury (RILI) have been widely demonstrated, but the mechanisms involved have been incompletely elucidated. N6 -methyladenosine (m6 A) modification, the most abundant reversible methylation modification in eukaryotic mRNAs, plays vital roles in multiple biological processes. Whether and how m6 A modification participates in ionizing radiation (IR)-induced EMT and RILI remain unclear. Here, significantly increased m6 A levels upon IR-induced EMT are detected both in vivo and in vitro. Furthermore, upregulated methyltransferase-like 3 (METTL3) expression and downregulated α-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5) expression are detected. In addition, blocking METTL3-mediated m6 A modification suppresses IR-induced EMT both in vivo and in vitro. Mechanistically, forkhead box O1 (FOXO1) is identified as a key target of METTL3 by a methylated RNA immunoprecipitation (MeRIP) assay. FOXO1 expression is downregulated by METTL3-mediated mRNA m6 A modification in a YTH-domain family 2 (YTHDF2)-dependent manner, which subsequently activates the AKT and ERK signaling pathways. Overall, the present study shows that IR-responsive METTL3 is involved in IR-induced EMT, probably by activating the AKT and ERK signaling pathways via YTHDF2-dependent FOXO1 m6 A modification, which may be a novel mechanism involved in the occurrence and development of RILI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。