CircMYH9/miR-133a-3p/CXCR4 axis: a novel regulatory network in sperm fertilization and embryo development

CircMYH9/miR-133a-3p/CXCR4 轴:精子受精和胚胎发育中的新型调控网络

阅读:11
作者:Qian Sun #, Yanyu Li #, Wen Yang, Wen Feng, Jiayun Zhou, Yijuan Cao, Bei Zhang, Zuobin Zhu, Conghui Han4

Abstract

This study aimed to investigate the influence of sperm miRNAs on fertilization rates (FR) in in vitro fertilization (IVF) and to explore potential regulatory mechanisms in sperm-mediated fertilization and embryo development. Through high-throughput sequencing, we identified differentially expressed miRNAs in sperm, with miR-133a-3p significantly upregulated in samples associated with low FR and available embryo rate (AER). Key regulatory circRNAs and mRNAs were further identified via the Starbase database, intersected with differentially expressed RNA, and analyzed through GO, KEGG, and PPI analyses. The circMYH9/miR-133a-3p/CXCR4 axis emerged as a critical regulatory network. In vitro assays using the GC-2 spd mouse spermatogenic cell line revealed that miR-133a-3p inhibited cell growth and proliferation while promoting apoptosis. circMYH9, acting as a competing endogenous RNA (ceRNA) for miR-133a-3p, modulated CXCR4 expression, enhancing GC-2 spd cell growth and inhibiting apoptosis through the miR-133a-3p/CXCR4 axis. In vivo experiments using a mouse model confirmed that circMYH9 overexpression increased IVF success rates and promoted embryo development via this axis. Mechanistically, miR-133a-3p suppresses sperm fertilization and embryo development by targeting the circMYH9/miR-133a-3p/CXCR4 axis. These findings suggest that this regulatory network could serve as a novel biomarker for assessing fertilization potential and embryo quality in clinical settings and as a potential therapeutic target to improve IVF outcomes and address infertility. This study provides valuable insights into the molecular mechanisms governing sperm function and early embryonic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。