Cardioprotection of an IK1 channel agonist on L-thyroxine induced rat ventricular remodeling

IK1 通道激动剂对 L-甲状腺素诱发的大鼠心室重塑的心脏保护作用

阅读:5
作者:Qing-Hua Liu, Li-Jun Zhang, Jin Wang, Bo-Wei Wu, Ji-Min Cao

Abstract

Downregulation of inward rectifier potassium (IK1) channel is a hallmark in cardiac hypertrophy and failure. The cardioprotection of zacopride (a selective IK1 agonist) and underlying mechanisms were investigated in L-thyroxine (T4) or Triiodothyronine (T3)-induced cardiac remodeling. In the in vivo study, adult male Sprague-Dawley (SD) rats were randomly divided into control, L-thyroxine, L-thy+zacopride, and L-thy+zacopride+chloroquine (an IK1 antagonist) groups. Echocardiography, histopathology, TUNEL assay, western blotting and confocal imaging for intracellular Ca2+ fluorescence were performed. In the in vitro study, zacopride and nifedipine (a LTCC blocker) were used to compare their effects on Kir2.1, SAP97, autophagy, and [Ca2+]i in H9C2 (2-1) cardiomyocytes. Zacopride treatment attenuated L-thyroxine- or T3 induced cardiac remodeling and dysfunction which manifested as cardiac hypertrophy and collagen deposition, dilated ventricle, decreased ejection fraction (EF), increased cardiomyocytes apoptosis, hyper-activation of CaMKII and PI3K/Akt/mTOR signaling, decreased cardiac autophagy, and increased expression of integrin β3. The cardioprotection of zacopride is strongly associated with the upregulation of IK1, SAP97, and [Ca2+]i homeostasis in cardiomyocytes. IK1 antagonist chloroquine or BaCl2 reversed these effects. Nifedipine could attenuate intracellular Ca2+ overload with no significant effects on IK1, SAP97, and autophagy. This study showed that zacopride could improve cardiac remodeling via facilitating Kir2.1 forward trafficking, and negatively regulating calcium-activated and PI3K/Akt/mTOR signalings, in an IK1-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。