Conclusion
Therefore, we believe that relatively high IAA content and low CKs, GAs and ABA contents contribute to EC formation. The differential expression of AUX, CKs, GAs and ABA biosynthesis and signal transduction genes affected the endogenous hormone levels at different stages of SE in O. henryi. The downregulated expression of AUX/IAA inhibited NEC induction, promoted EC formation and GE differentiation into CE.
Methods
In this study, we analysed the endogenous hormone levels and transcriptome data of nonembryogenic callus (NEC), embryogenic callus (EC), globular embryo (GE) and cotyledon embryo (CE) in O. henryi.
Results
The results showed that the indole-3-acetic acid (IAA) content was higher and the cytokinins (CKs) content was lower in EC than in NEC, and the gibberellins (GAs) and abscisic acid (ABA) contents were significantly higher in NEC than in EC. The contents of IAA, CKs, GAs and ABA increased significantly with EC development. The expression patterns of differentially expressed genes (DEGs) involved in the biosynthesis and signal transduction of auxin (AUX) (YUCCA and SAUR), CKs (B-ARR), GAs (GA3ox, GA20ox, GID1 and DELLA) and ABA (ZEP, ABA2, AAO3, CYP97A3, PYL and ABF) were consistent with the levels of endogenous hormones during somatic embryogenesis (SE). In this study, 316 different transcription factors (TFs) regulating phytohormones were detected during SE. AUX/IAA were downregulated in the process of EC formation and GE differentiation into CE, but other TFs were upregulated and downregulated.
