Immunization with a combination of recombinant Brucella abortus proteins induces T helper immune response and confers protection against wild-type challenge in BALB/c mice

重组布鲁氏杆菌蛋白组合免疫可诱导 T 辅助免疫反应,并为 BALB/c 小鼠提供针对野生型攻击的保护

阅读:7
作者:Zhiqiang Li, Shuli Wang, Shujuan Wei, Guangli Yang, Chunmei Zhang, Li Xi, Jinliang Zhang, Yanyan Cui, Junfang Hao, Huan Zhang, Hui Zhang

Abstract

Protective efficiency of a combination of four recombinant Brucella abortus (B. abortus) proteins, namely, ribosomal protein L7/L12, outer membrane protein (OMP) 22, OMP25 and OMP31, was evaluated as a combined subunit vaccine (CSV) against B. abortus infection in RAW 264.7 cell line and murine model. Four proteins were cloned, expressed and purified, and their immunocompetence was analysed. BALB/c mice were immunized subcutaneously with single subunit vaccines (SSVs) or CSV. Cellular and humoral immune responses were determined by ELISA. Results of immunoreactivity showed that these four recombinant proteins reacted with Brucella-positive serum individually but not with Brucella-negative serum. A massive production of IFN-γ and IL-2 but low degree of IL-10 was observed in mice immunized with SSVs or CSV. In addition, the titres of IgG2a were heightened compared with IgG1 in SSV- or CSV-immunized mice, which indicated that SSVs and CSV induced a typical T-helper-1-dominated immune response in vivo. Further investigation of the CSV showed a superior protective effect in mice against brucellosis. The protection level induced by CSV was significantly higher than that induced by SSVs, which was not significantly different compared with a group immunized with RB51. Collectively, these antigens of Brucella could be potential candidates to develop subunit vaccines, and the CSV used in this study could be a potential candidate therapy for the prevention of brucellosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。