The TL1A-DR3 Axis in Asthma: Membrane-Bound and Secreted TL1A Co-Determined the Development of Airway Remodeling

哮喘中的 TL1A-DR3 轴:膜结合和分泌的 TL1A 共同决定气道重塑的发展

阅读:6
作者:Jintao Zhang #, Dong Zhang #, Yun Pan, Xiaofei Liu, Jiawei Xu, Xinrui Qiao, Wenjing Cui, Liang Dong

Conclusions

Our results confirm differential TL1A expression (including its secreted and non-secreted form) in asthma, which modulates remodeling. The shared mechanism of action by which nsTL1A and secreted TL1A exert their effects on asthma development might be mediated via the nuclear factor-κB pathway. The TL1A-DR3 axis presents a promising therapeutic target in asthma.

Methods

The present study investigated the expression and secretion of TL1A in the lung and human bronchial epithelial cells. DR3 small interfering RNA (siRNA), TL1A siRNA, and truncated plasmids were used respectively to identify the function of the TL1A-DR3 axis in vitro. To further validate the roles of the TL1A-DR3 axis in asthma, we collected airway biopsies and sputa from asthmatic patients and constructed a mouse model following rTL1A administration, DR3 knockdown, and TL1A knockout, the asthma-related inflammatory response and the pathological changes in airways were analyzed using various experimental methods. Associated signaling pathways downstream of TL1A knockout in the mouse model were analyzed using RNA sequencing.

Purpose

Tumor necrosis factor-like ligand 1A (TL1A), especially its secreted form, has been shown to contribute to eosinophilic inflammation and mucus production, cardinal features of asthma, through its receptor, death receptor 3 (DR3). However, the role of the TL1A-DR3 axis in asthma, especially in terms of airway remodeling, has not yet been fully understood.

Results

TL1A, especially its non-secreted form (nsTL1A) was involved in the remodeling process in asthmatics' airways. Knockdown of TL1A or its receptor DR3 decreased the expression of fibrosis-associated protein in BEAS-2B cells. Reversely, overexpression of nsTL1A in airway epithelial cells facilitated the transforming growth factor-β-induced remodeling progress. In the asthma mouse model, activating the TL1A-DR3 axis contributes to airway inflammation, remodeling, and tissue destruction. Reciprocally, DR3 knockdown or TL1A knockout partly reverses airway remodeling in the asthma model induced by ovalbumin. Conclusions: Our results confirm differential TL1A expression (including its secreted and non-secreted form) in asthma, which modulates remodeling. The shared mechanism of action by which nsTL1A and secreted TL1A exert their effects on asthma development might be mediated via the nuclear factor-κB pathway. The TL1A-DR3 axis presents a promising therapeutic target in asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。