PA6 and Halloysite Nanotubes Composites with Improved Hydrothermal Ageing Resistance: Role of Filler Physicochemical Properties, Functionalization and Dispersion Technique

提高耐水热老化性能的 PA6 和埃洛石纳米管复合材料:填料物理化学性质、功能化和分散技术的作用

阅读:6
作者:Valentina Sabatini, Tommaso Taroni, Riccardo Rampazzo, Marco Bompieri, Daniela Maggioni, Daniela Meroni, Marco Aldo Ortenzi, Silvia Ardizzone

Abstract

Polyamide 6 (PA6) suffers from fast degradation in humid conditions due to hydrolysis of amide bonds, which limits its durability. The addition of nanotubular fillers represents a viable strategy for overcoming this issue, although the additive/polymer interface at high filler content can become privileged site for moisture accumulation. As a cost-effective and versatile material, halloysite nanotubes (HNT) were investigated to prepare PA6 nanocomposites with very low loadings (1-45% w/w). The roles of the physicochemical properties of two differently sourced HNT, of filler functionalization with (3-aminopropyl)triethoxysilane and of dispersion techniques (in situ polymerization vs. melt blending) were investigated. The aspect ratio (5 vs. 15) and surface charge (-31 vs. -59 mV) of the two HNT proved crucial in determining their distribution within the polymer matrix. In situ polymerization of functionalized HNT leads to enclosed and well-penetrated filler within the polymer matrix. PA6 nanocomposites crystal growth and nucleation type were studied according to Avrami theory, as well as the formation of different crystalline structures (α and γ forms). After 1680 h of ageing, functionalized HNT reduced the diffusion of water into polymer, lowering water uptake after 600 h up to 90%, increasing the materials durability also regarding molecular weights and rheological behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。