Using a Quantitative High-Throughput Screening Platform to Identify Molecular Targets and Compounds as Repurposing Candidates for Endometriosis

使用定量高通量筛选平台识别可作为子宫内膜异位症再利用候选药物的分子靶点和化合物

阅读:5
作者:Molly L Churchill, Sarah J Holdsworth-Carson, Karla J Cowley, Jennii Luu, Kaylene J Simpson, Martin Healey, Peter A W Rogers, J F Donoghue

Abstract

Endometriosis, defined as the growth of hormonally responsive endometrial-like tissue outside of the uterine cavity, is an estrogen-dependent, chronic, pro-inflammatory disease that affects up to 11.4% of women of reproductive age and gender-diverse people with a uterus. At present, there is no long-term cure, and the identification of new therapies that provide a high level of efficacy and favourable long-term safety profiles with rapid clinical access are a priority. In this study, quantitative high-throughput compound screens of 3517 clinically approved compounds were performed on patient-derived immortalized human endometrial stromal cell lines. Following assay optimization and compound criteria selection, a high-throughput screening protocol was developed to enable the identification of compounds that interfered with estrogen-stimulated cell growth. From these screens, 23 novel compounds were identified, in addition to their molecular targets and in silico cell-signalling pathways, which included the neuroactive ligand-receptor interaction pathway, metabolic pathways, and cancer-associated pathways. This study demonstrates for the first time the feasibility of performing large compound screens for the identification of new translatable therapeutics and the improved characterization of endometriosis molecular pathophysiology. Further investigation of the molecular targets identified herein will help uncover new mechanisms involved in the establishment, symptomology, and progression of endometriosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。