Mechanisms of targeted therapy resistance in a pediatric glioma driven by ETV6-NTRK3 fusion

ETV6-NTRK3 融合导致儿童胶质瘤靶向治疗耐药的机制

阅读:5
作者:Clare Keddy, Tanaya Neff, Jianya Huan, Joshua P Nickerson, Catherine Z Beach, Yassmine Akkari, Jianling Ji, Stephen Moore, Kellie J Nazemi, Christopher L Corless, Carol Beadling, Randy Woltjer, Yoon-Jae Cho, Matthew D Wood, Monika A Davare

Abstract

Chromosomal rearrangements of the NTRK genes generate kinase fusions that are targetable oncogenic drivers in diverse adult and pediatric malignancies. Despite robust clinical response to targeted NTRK inhibition, the emergence of therapeutic resistance poses a formidable clinical challenge. Here we report the characterization of an ETV6-NTRK3 fusion-driven pediatric glioma that progressed through NTRK-targeted treatments with entrectinib and selitrectinib. Genetic analysis of multifocal recurrent/resistant lesions identified a previously uncharacterized NTRK3 p.G623A and a known p.G623E resistance mutation, in addition to other alterations of potential pathogenic impact. Functional studies using heterologous reconstitution model systems and patient-derived tumor cell lines establish that NTRK3G623A and NTRK3G623E mutated kinases exhibit reduced sensitivity to entrectinib and selitrectinib, as well as other NTRK inhibitors tested herein. In summary, this genetic analysis of multifocal recurrent/resistant glioma driven by ETV6-NTRK3 fusion captured a cross section of resistance-associated alterations that, based on in vitro analysis, likely contributed to resistance to targeted therapy and disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。