Age-related calcium signaling disturbance restricted cAMP metabolism and induced ovarian oxidation stress in laying ducks

与年龄相关的钙信号紊乱限制了产蛋鸭的 cAMP 代谢并引发卵巢氧化应激

阅读:6
作者:Cheng-Long Jin, Sheng-Lin Wang, Shuang Wang, Ya-Nan Zhang, Wei-Guang Xia, Chang Zhang, Xue-Bing Huang, Kai-Chao Li, Chun-Tian Zheng, Wei Chen

Abstract

The ovary is the main controller of female fertility, unfortunately, its onset of aging processes was earlier than other organs. Our previous studies showed calcium (Ca) deficiency reduced ovarian weight and declined numbers of dominant follicles in an avian model. However, whether Ca provided a functional role in follicle development of aged avian, and its further mechanism was still unknown. In this study, fifty180-day-old and fifty 700-day-old female Longyan ducks were divided into the young group and the aged group to illustrate the differences of Ca signaling and further mechanisms. We found the poor productive performance of aged ducks was correlated with follicle decreased numbers and atrophied microstructure, and restricted antioxidant ability of granulosa cells (GCs). Then, according to RNA-Seq analysis, we detected those aged ducks displayed lower Ca concentration in the ovary, while Ca channel related gene expression was increased in GCs to maintain homeostasis. Moreover, the cyclic adenosine monophosphate (cAMP) concentration and cAMP synthase family related genes were also decreased in GCs of aged ducks. Fortunately, medium supplemented with Ca channel-activator A23187 enhanced GC viability, antioxidant ability, tight junction ability, and increased cAMP concentration by improved cAMP metabolism, otherwise, the opposite changes were observed with Ca2+-chelating agent EGTA or Ca channel-inhibitor Verapamil supplementation. In conclusion, aging disordered Ca signaling to limit cAMP metabolism, then decreased antioxidant ability and inhibited proliferation and migration ability of GCs. Thus, the follicle development and reproductive performance were restricted in aged avian.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。