Mitigation of drought stress in chili plants (Capsicum annuum L.) using mango fruit waste biochar, fulvic acid and cobalt

利用芒果废料生物炭、黄腐酸和钴缓解辣椒植物(Capsicum annuum L.)的干旱胁迫

阅读:4
作者:Misbah Hareem, Subhan Danish, Sami Al Obaid, Mohammad Javed Ansari, Rahul Datta

Abstract

Drought stress can have negative impacts on crop productivity. It triggers the accumulation of reactive oxygen species, which causes oxidative stress. Limited water and nutrient uptake under drought stress also decreases plant growth. Using cobalt and fulvic acid with biochar in such scenarios can effectively promote plant growth. Cobalt (Co) is a component of various enzymes and co-enzymes. It can increase the concentration of flavonoids, total phenols, antioxidant enzymes (peroxidase, catalase, and polyphenol oxidase) and proline. Fulvic acid (FA), a constituent of soil organic matter, increases the accessibility of nutrients to plants. Biochar (BC) can enhance soil moisture retention, nutrient uptake, and plant productivity during drought stress. That's why the current study explored the influence of Co, FA and BC on chili plants under drought stress. This study involved 8 treatments, i.e., control, 4 g/L fulvic acid (4FA), 20 mg/L cobalt sulfate (20CoSO4), 4FA + 20CoSO4, 0.50%MFWBC (0.50 MFWBC), 4FA + 0.50MFWBC, 20CoSO4 + 0.50MFWBC, 4FA + 20CoSO4 + 0.50MFWBC. Results showed that 4 g/L FA + 20CoSO4 with 0.50MFWBC caused an increase in chili plant height (23.29%), plant dry weight (28.85%), fruit length (20.17%), fruit girth (21.41%) and fruit yield (25.13%) compared to control. The effectiveness of 4 g/L FA + 20CoSO4 with 0.50MFWBC was also confirmed by a significant increase in total chlorophyll contents, as well as nitrogen (N), phosphorus (P), and potassium (K) in leaves over control. In conclusion4g/L, FA + 20CoSO4 with 0.50MFWBC can potentially improve the growth of chili cultivated in drought stress. It is suggested that 4 g/L FA + 20CoSO4 with 0.50MFWBC be used to alleviate drought stress in chili plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。