Metabolism changes caused by glucose in normal and cancer human brain cell lines by Raman imaging and chemometric methods

拉曼成像和化学计量学方法研究正常和癌症人脑细胞系中葡萄糖引起的代谢变化

阅读:5
作者:Monika Kopec, Karolina Beton-Mysur, Jakub Surmacki, Halina Abramczyk

Abstract

Glucose is the main source of energy for the human brain. This paper presents a non-invasive technique to study metabolic changes caused by glucose in human brain cell lines. In this paper we present the spectroscopic characterization of human normal brain (NHA; astrocytes) and human cancer brain (CRL-1718; astrocytoma and U-87 MG; glioblastoma) control cell lines and cell lines upon supplementation with glucose. Based on Raman techniques we have identified biomarkers that can monitor metabolic changes in lipid droplets, mitochondria and nucleus caused by glucose. We have studied the vibrations at 750 cm-1, 1444 cm-1, 1584 cm-1 and 1656 cm-1 as a function of malignancy grade. We have compared the concentration of cytochrome, lipids and proteins in the grade of cancer aggressiveness in normal and cancer human brain cell lines. Chemometric analysis has shown that control normal, control cancer brain cell lines and normal and cancer cell lines after supplementation with glucose can be distinguished based on their unique vibrational properties. PLSDA (Partial Least Squares Discriminant Analysis) and ANOVA tests have confirmed the main role of cytochromes, proteins and lipids in differentiation of control human brain cells and cells upon supplementation with glucose. We have shown that Raman techniques combined with chemometric analysis provide additional insight to monitor the biology of astrocytes, astrocytoma and glioblastoma after glucose supplementation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。