Chronic Leptin Deficiency Improves Tolerance of Physiological Damage and Host-Pathogen Cooperation during Yersinia pseudotuberculosis Infection

慢性瘦素缺乏可提高耶尔森氏假结核杆菌感染期间对生理损伤和宿主-病原体合作的耐受性

阅读:4
作者:Karina K Sanchez #, Katia Troha #, Andre Mu, Samuel E Redford, Justin L McCarville, Arianna Insenga, Sarah Stengel, Yujung Michelle Lee, Janelle S Ayres

Abstract

To combat infections, hosts employ a combination of antagonistic and cooperative defense strategies. The former refers to pathogen killing mediated by resistance mechanisms, while the latter refers to physiological defense mechanisms that promote host health during infection independent of pathogen killing, leading to an apparent cooperation between the host and the pathogen. Previous work has shown that Leptin, a pleiotropic hormone that plays a central role in regulating appetite and energy metabolism, is indispensable for resistance mechanisms, while a role for Leptin signaling in cooperative host-pathogen interactions remains unknown. Using a mouse model of Yersinia pseudotuberculosis (Yptb) infection, an emerging pathogen that causes fever, diarrhea, and mesenteric lymphadenitis in humans, we found that the physiological effects of chronic Leptin-signaling deficiency conferred protection from Yptb infection due to increased host-pathogen cooperation rather than greater resistance defenses. The protection against Yptb infection was independent of differences in food consumption, lipolysis, or fat mass. Instead, we found that the chronic absence of Leptin signaling protects from a shift to lipid utilization during infection that contributes to Yptb lethality. Furthermore, we found that the survival advantage conferred by Leptin deficiency was associated with increased liver and kidney damage. Our work reveals an additional level of complexity for the role of Leptin in infection defense and demonstrates that in some contexts, in addition to tolerating the pathogen, tolerating organ damage is more beneficial for survival than preventing the damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。