A novel of WS2-MoCuO3 supported with graphene quantum dot as counter electrode for dye-sensitized solar cells application

一种新型 WS2-MoCuO3 负载石墨烯量子点作为染料敏化太阳能电池对电极的应用

阅读:8
作者:Yonrapach Areerob, Won-Chun Oh, Chaowalit Hamontree, Theeranuch Nachaithong, Supinya Nijpanich, Kongsak Pattarith

Abstract

A novel tungsten disulfide-molybdenum copper oxide composite supported with graphene quantum dots (WM@GQDs) has been synthesized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs) using a simple and low-cost ultrasonication method. The unique structure of WM@GQDs exhibits excellent power conversion efficiency due to its high catalytic activity and charge transport properties. In addition, the graphene quantum dots (GQDs) provide more active sites in the zero-dimensional materials for an I/I3- redox reaction which can improve the electrical and optical properties of the composite. The results indicate that the amount of GQDs in the composite affect the effectiveness of solar devices. When 0.9%wt of GQDs was used, the WM@GQDs composite achieved an efficiency of 10.38%, which is higher than that of the expensive platinum CE under the same conditions. The mechanism behind the improved power conversion efficiency (PCE) of the composite sample is also discussed in detail. Therefore, WM@GQDs can be an efficient material to replace platinum in DSSCs as a CE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。