Antinociceptive activities of Artocarpus lacucha Buch-ham (Moraceae) and its isolated phenolic compound, catechin, in mice

桑科菠萝蜜及其分离的酚类化合物儿茶素在小鼠体内的抗伤害活性

阅读:5
作者:Shanta Islam, Md Shafiullah Shajib, Ridwan Bin Rashid, Mohammad Firoz Khan, Md Abdullah Al-Mansur, Bidyut Kanti Datta, Mohammad Abdur Rashid

Background

The present study evaluated the antinociceptive effect of the bark of Artocarpus lacucha, which is used for the treatment of stomachache, headache and boils in the traditional system of medicine.

Conclusions

The investigation revealed potential central and peripheral antinociceptive effects of A. lacucha bark supports its applications in the traditional system of medicine.

Methods

The antinociceptive activity was investigated by the tail immersion, hot plate, acetic acid- & formalin-induced nociception and carrageenan-induced paw edema tests using a hydro-methanolic extract of A. lacucha bark. The plant extract was found to contain a substantial amount of phenolic compounds according to the total phenolic and flavonoid content assay. A phenolic metabolite, (+)-catechin, has been isolated using different chromatographic techniques. The compound was characterized with 1D and 2D NMR spectroscopic data. (+)-catechin, isolated from A. lacucha was assessed for antinociceptive effects swiss albino mice. Furthermore, the possible involvement of opioid receptors and ATP-sensitive K+ channel for the effect of the plant extract and (+)-catechin has been justified using naloxone and glibenclamide, respectively.

Results

Oral administration (p.o) of the plant extract (50-200 mg/Kg b.w.) resulted in significant thermal pain protection in the hot plate and tail immersion tests. The action of the plant extract was significantly antagonized by naloxone, a non-selective opioid antagonist, in the hot plate and tail immersion tests, which supports the involvement of opioid receptors. Both the plant extract and (+)-catechin, (50-200 mg/Kg b.w., p.o.) significantly diminished the acetic acid- & formalin-induced nociception, and carrageenan-induced paw edema. Glibenclamide, an ATP-sensitive K+ channel blocker, significantly reversed their effect in the acetic acid-induced writhing test which indicates the participation of ATP-sensitive K+ channel system. Conclusions: The investigation revealed potential central and peripheral antinociceptive effects of A. lacucha bark supports its applications in the traditional system of medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。