Immunogenic profiling of Mycobacterium tuberculosis DosR protein Rv0569 reveals its ability to switch on Th1 based immunity

结核分枝杆菌 DosR 蛋白 Rv0569 的免疫原性分析揭示了其启动 Th1 型免疫的能力

阅读:4
作者:Kala Jyothi Kanaparthi, Sumbul Afroz, Gillipsie Minhas, Anurupa Moitra, Rafiq Ahmad Khan, Jayashankar Medikonda, Saima Naz, Sai Nikhith Cholleti, Sharmistha Banerjee, Nooruddin Khan

Abstract

Mycobacterium tuberculosis (M.tb) is a multifaceted bacterial pathogen known to infect more than 2 billion people globally. However, a majority of the individuals (>90%) show no overt clinical symptoms of active Tuberculosis (TB) and, it is reported that M.tb in these individuals resides in the latent form. Therefore, a huge burden of latently infected population poses serious threat to the human health. Inconsistent efficacy of BCG vaccine and poor understanding of latency-associated determinants contribute to the failure of combating M.tb. The discovery of DosR as the master regulator of dormancy, opened new avenues to understand the pathophysiology of the bacterium. Though the specific functions of various DosR genes are yet to be discovered, they have been reported as potent T-cell activators and could elicit strong protective immune responses. Rv0569 is a DosR-encoded conserved hypothetical protein overexpressed during dormancy. However, it is not clearly understood how this protein modulates the host immune response. In the present study, we have demonstrated that Rv0569 has a high antigenic index and induces enhanced secretion of Th1 cytokines IL-12p40 and TNF-α as compared to Th2 cytokine IL-10 in macrophages. Mechanistically, Rv0569 induced the transcription of these pro-inflammatory signatures through the activation of NF-κB pathway. Further, immunization of mice with DosR protein Rv0569 switched the immune response towards Th1-biased cytokine pattern, characterized by the enhanced production of IFN-γ, IL-12p40, and TNF-α. Rv0569 augmented the expansion of antigen-specific IFN-γ and IL-2 producing effector CD4+and CD8+ T-cells which are hallmarks of Th1 biased protective immunity. Additionally, IgG2a/IgG1 and IgG2b/IgG1 ratio in the serum of immunized mice further confirmed the ability of Rv0569 to skew Th1 biased immune response. In conclusion, we emphasize that Rv0569 has the ability to generate signals to switch on Th1-dominated responses and further suggest that it could be a potential vaccine candidate against latent M.tb infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。