EphrinA1/EphA2 Promotes Epithelial Hyperpermeability Involving in Lipopolysaccharide-induced Intestinal Barrier Dysfunction

EphrinA1/EphA2促进上皮通透性增高参与脂多糖引起的肠道屏障功能障碍

阅读:7
作者:Yuhua Chen, Lei Zhang, Yongbo Zhang, Tao Bai, Jun Song, Wei Qian, Xiaohua Hou

Aims

Lipopolysaccharide (LPS) is the key factor inducing mucosal and systemic inflammation in various intestinal and parenteral diseases, which could initially disrupt the epithelial barrier function. EphrinA1/ephA2 is speculated to increase the epithelial permeability for its "repulsive interaction" between adjacent cells. This study aim to investigate the role of ephrinA1/ephA2 in LPS-induced epithelial hyperpermeability.

Background/aims

Lipopolysaccharide (LPS) is the key factor inducing mucosal and systemic inflammation in various intestinal and parenteral diseases, which could initially disrupt the epithelial barrier function. EphrinA1/ephA2 is speculated to increase the epithelial permeability for its "repulsive interaction" between adjacent cells. This study aim to investigate the role of ephrinA1/ephA2 in LPS-induced epithelial hyperpermeability.

Conclusion

EphrinA1/ephA2 promotes epithelial hyperpermeability with an ERK1/2-dependent pathway, which involves in LPS-induced intestinal barrier dysfunction.

Methods

In vivo model challenged with oral LPS in C57BL/6 mice and in vitro model exposed to LPS in Caco2 monolayer were established. The barrier function was assessed including expression of tight junction proteins (occludin and claudin-1), transepithelial electrical resistance, and permeability to macromolecules (fluorescein isothiocyanate-labeled fluorescent dextran 4 kDa [FD4]). Moreover, the expression and phosphorylation of ephrinA1/ephA2 were quantified, and its roles in the process of epithelial barrier disruption were confirmed via stimulating ephA2 with ephrinA1-Fc chimera (ephrinA1-Fc) and inactivating ephA2 with ephA2-Fc chimera (ephA2-Fc), or ephA2 monoclonal antibody (ephA2-mab), as well as inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2) with PD98059.

Results

LPS induced significant barrier dysfunction with dismissed occludin and claudin-1 expression, reduced transepithelial electrical resistance and increased FD4 permeability, accompanied by upregulated ephrinA1/ephA2 pathway and phosphorylation of ephA2 receptor. Furthermore, ephA2-Fc, and ephA2-mab ameliorated LPS-induced epithelial hyperpermeability, which was also inhibited by PD98059. Additionally, ephrinA1-Fc led to apparent epithelial leakage in Caco2 monolayer by promoting the phosphorylation of ERK1/2, which could be obviously blocked by ephA2-mab and PD98059.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。