Combined analysis of metagenome and transcriptome revealed the adaptive mechanism of different golden Camellia species in karst regions

宏基因组与转录组联合分析揭示不同金花茶树种在喀斯特地区的适应机制

阅读:6
作者:Jianxiu Liu #, Haidu Jiang #, Yang Huang #, Lisha Zhong, Qin Xu, Quanguang Yang, Shengyuan Liu, Xiao Wei, Yu Liang, Shengfeng Chai

Abstract

Camellia sect. Chrysantha is an important rare and protected plant species. Some golden Camellia species grow in karst soil while others grow in acidic soil. In order to study the adaptation mechanism of golden Camellia to the karst environment, four species of golden Camellia growing in the karst soil (Camellia pubipetala, Camellia perpetua, Camellia grandis, and Camellia limonia) and four species growing in the acidic soil (Camellia nitidissima, Camellia euphlebia, Camellia tunghinensis, and Camellia parvipetala) were selected for this study. Combining the metagenome and transcriptome, the structure and function of the rhizosphere microbial communities and the gene expression in roots of golden Camellia were analyzed. The results showed that the rhizosphere microbial communities in different golden Camellia were significantly different in abundance of Acidobacteria, Actinobacteria, Candidatus_Rokubacteria, Nitrospirae, Planctomycetes, and Candidatus_Tectomicrobia. The proportion of Candidatus_Rokubacteria was significantly higher in the rhizosphere soil of four species of golden Camellia grown in karst areas, compared to C. nitidissima, C. euphlebia, and C. tunghinensis. The linear discriminant analysis Effect Size showed that C. parvipetala was similar to karst species in the enrichment of ABC transporters and quorum sensing. During the transcriptome analysis, numerous upregulated genes in four karst species, including CYP81E, CHS, F3H, C12RT1, NAS, and CAD, were found to be enriched in the secondary metabolite synthesis pathway in the KEGG library, when compared to C. tunghinensis. This study provides information for plant adaptation mechanisms on the rhizosphere soil microbial composition and gene expression in secondary metabolic pathways to karst habitats and its distribution in karst areas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。