Development of alveolar-capillary-exchange (ACE) chip and its application for assessment of PM2.5-induced toxicity

肺泡毛细血管交换(ACE)芯片的开发及其在PM2.5毒性评估中的应用

阅读:5
作者:Mingyang Guan, Song Tang, Huiyun Chang, Yuanyuan Chen, Fengge Chen, Ying Mu, Dong Zhao, Weiwei Fan, Huifang Tian, Diane C Darland, Ying Zhang

Abstract

Although standard two-dimensional (2D) cell culture is an effective tool for cell studies, monolayer cultivation can yield imperfect or misleading information about numerous biological functions. In this study, we developed an alveolar-capillary exchange (ACE) chip aiming to simulate the cellular microenvironment at the alveolar-capillary interface. The ACE chip was designed with two chambers for culturing alveolar epithelial cells and vascular endothelial cells separately, which are separated by a microporous polycarbonate film that allows for the exchange of soluble biomolecules. Using this model, we further tested the toxic effects of fine particulate matter (PM2.5), a form of airborne pollutant known to induce adverse effects on human respiratory system. These effects are largely associated with the ability of PM2.5 to penetrate the alveoli, where it negatively affects the pulmonary function. Our results indicate that alveolar epithelial cells cultured in the ACE chip in solo and coculture with vascular endothelial cells underwent oxidative injury-induced apoptosis mediated via the PEAK-eIF2α signaling pathway of endoplasmic reticulum stress. The use of ACE chip in an alveolar epithelial cell-vascular endothelial cell coculture model revealed cellular vulnerability to PM2.5. Therefore, this chip provides a feasible surrogate approach in vitro for investigating and simulating the cellular microenvironment responses associated with ACE in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。