Association of altered collagen content and lysyl oxidase expression in degenerative mitral valve disease

退行性二尖瓣疾病中胶原含量改变与赖氨酸氧化酶表达的关系

阅读:5
作者:K-Raman Purushothaman, Meerarani Purushothaman, Irene C Turnbull, David H Adams, Anelechi Anyanwu, Prakash Krishnan, Annapoorna Kini, Samin K Sharma, William N O'Connor, Pedro R Moreno

Background

Collagen cross-linking is mediated by lysyl oxidase (LOX) enzyme in the extracellular matrix (ECM) of mitral valve leaflets. Alterations in collagen content and LOX protein expression in the ECM of degenerative mitral valve may enhance leaflet expansion and disease severity.

Conclusions

Reduced Type I collagen density with a simultaneous increase in Type III collagen and proteoglycan densities possibly contributes to spongiosa layer expansion resulting in incompetent mitral valve leaflets. Observed changes in Type I and III collagen densities in Degenerative Mitral Valve Disease may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity.

Methods

Twenty posterior degenerative mitral valve leaflets from patients with severe mitral regurgitation were obtained at surgery. Five normal posterior mitral valve leaflets procured during autopsy served as controls. Valvular interstitial cells (VICs) density was quantified by immunohistochemistry, collagen Types I and III by picro-sirius red staining and immunohistochemistry, and proteoglycans by alcian blue staining. Protein expression of LOX and its mediator TGFβ1 were quantified by immunofluorescence and gene expression by PCR.

Results

VIC density was increased, structural Type I collagen density was reduced, while reparative Type III collagen and proteoglycan densities were increased (P<.0001) with an increase in spongiosa layer thickness in myxomatous valves. These changes were associated with a reduction in LOX (P<.0001) and increase in TGFβ1 protein expression (P<.0001). However, no significant change was seen in gene expression. Linear regression analysis identified a correlation between Type I collagen density and LOX grade (R2=0.855; P<.0001). Conclusions: Reduced Type I collagen density with a simultaneous increase in Type III collagen and proteoglycan densities possibly contributes to spongiosa layer expansion resulting in incompetent mitral valve leaflets. Observed changes in Type I and III collagen densities in Degenerative Mitral Valve Disease may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。