Bacillus anthracis lethal toxin, but not edema toxin, increases pulmonary artery pressure and permeability in isolated perfused rat lungs

炭疽杆菌致死毒素(而非水肿毒素)可增加大鼠离体灌注肺的肺动脉压力和通透性

阅读:6
作者:Xizhong Cui, Wanying Xu, Pranita Neupane, Andie Weiser-Schlesinger, Ray Weng, Benjamin Pockros, Yan Li, Mahtab Moayeri, Stephen H Leppla, Yvonne Fitz, Peter Q Eichacker

Abstract

Although lethal toxin (LT) and edema toxin (ET) contribute to lethality during Bacillus anthracis infection, whether they increase vascular permeability and the extravascular fluid accumulation characterizing this infection is unclear. We employed an isolated perfused Sprague-Dawley rat lung model to investigate LT and ET effects on pulmonary vascular permeability. Lungs (n ≥ 6 per experimental group) were isolated, ventilated, suspended from a force transducer, and perfused. Lung weight and pulmonary artery (Ppa) and left atrial pressures were measured over 4 h, after which pulmonary capillary filtration coefficients (Kf.c) and lung wet-to-dry weight ratios (W/D) were determined. When compared with controls, LT increased Ppa over 4 h and Kf.c and W/D at 4 h (P < 0.0001). ET decreased Ppa in a significant trend (P = 0.09) but did not significantly alter Kf.c or W/D (P ≥ 0.29). Edema toxin actually blocked LT increases in Ppa but not LT increases in Kf.c and W/D. When Ppa was maintained at control levels, LT still increased Kf.c and W/D (P ≤ 0.004). Increasing the dose of each toxin five times significantly increased and a toxin-directed monoclonal antibody decreased the effects of each toxin (P ≤ 0.05). Two rho-kinase inhibitors (GSK269962 and Y27632) decreased LT increases in Ppa (P ≤ 0.02) but actually increased Kf.c and W/D in LT and control lungs (P ≤ 0.05). A vascular endothelial growth factor receptor inhibitor (ZM323881) had no significant effect (P ≥ 0.63) with LT. Thus, LT but not ET can increase pulmonary vascular permeability independent of increased Ppa and could contribute to pulmonary fluid accumulation during anthrax infection. However, pulmonary vascular dilation with ET could disrupt protective hypoxic vasoconstriction. NEW & NOTEWORTHY The most important findings from the present study are that Bacillus anthracis lethal toxin increases pulmonary artery pressure and pulmonary permeability independently in the isolated rat lung, whereas edema toxin decreases the former and does not increase permeability. Each effect could be a basis for organ dysfunction in patients with this lethal infection. These findings further support the need for adjunctive therapies that limit the effects of both toxins during infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。