Yihx-encoded haloacid dehalogenase-like phosphatase HAD4 from Escherichia coli is a specific α-d-glucose 1-phosphate hydrolase useful for substrate-selective sugar phosphate transformations

来自大肠杆菌的 Yihx 编码的卤酸脱卤酶样磷酸酶 HAD4 是一种特定的 α-d-葡萄糖 1-磷酸水解酶,可用于底物选择性糖磷酸转化

阅读:6
作者:Martin Pfeiffer, Patricia Wildberger, Bernd Nidetzky

Abstract

Phosphomonoester hydrolases (phosphatases; EC 3.1.3.) often exhibit extremely relaxed substrate specificity which limits their application to substrate-selective biotransformations. In search of a phosphatase catalyst specific for hydrolyzing α-d-glucose 1-phosphate (αGlc 1-P), we selected haloacid dehalogenase-like phosphatase 4 (HAD4) from Escherichia coli and obtained highly active recombinant enzyme through a fusion protein (Zbasic2_HAD4) that contained Zbasic2, a strongly positively charged three α-helical bundle module, at its N-terminus. Highly pure Zbasic2_HAD4 was prepared directly from E. coli cell extract using capture and polishing combined in a single step of cation exchange chromatography. Kinetic studies showed Zbasic2_HAD4 to exhibit 565-fold preference for hydrolyzing αGlc 1-P (kcat/KM = 1.87 ± 0.03 mM-1 s-1; 37 °C, pH 7.0) as compared to d-glucose 6-phosphate (Glc 6-P). Also among other sugar phosphates, αGlc 1-P was clearly preferred. Using different mixtures of αGlc 1-P and Glc 6-P (e.g. 180 mM each) as the substrate, Zbasic2_HAD4 could be used to selectively convert the αGlc 1-P present, leaving back all of the Glc 6-P for recovery. Zbasic2_HAD4 was immobilized conveniently using direct loading of E. coli cell extract on sulfonic acid group-containing porous carriers, yielding a recyclable heterogeneous biocatalyst that was nearly as effective as the soluble enzyme, probably because protein attachment to the anionic surface occurred in a preferred orientation via the cationic Zbasic2 module. Selective removal of αGlc 1-P from sugar phosphate preparations could be an interesting application of Zbasic2_HAD4 for which readily available broad-spectrum phosphatases are unsuitable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。