Enhancing soybean germination and vigor under water stress: the efficacy of bio-priming with sodium carboxymethyl cellulose and gum arabic

提高水分胁迫下大豆的发芽率和活力:羧甲基纤维素钠和阿拉伯胶的生物引发效果

阅读:8
作者:Aisha Almakas, Ahmed S Elrys, El-Sayed M Desoky, Laila A Al-Shuraym, Sadeq K Alhag, Mohammed O Alshaharni, Fawze Alnadari, Zhang NanNan, Zunaira Farooq, Khaled A El-Tarabily, Tuanjie Zhao

Abstract

Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions. The results revealed significant differences among varieties and applied treatments on germination, vigor, and physiological traits. Under drought stress, seed priming with 10% CG significantly improved germination percentage, germination rate, shoot length, root length, and biomass compared to unprimed seeds. Notable reductions in malondialdehyde (MDA) content and enhanced antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), suggest that 10% CG priming mitigates oxidative damage through enhanced antioxidant defense mechanisms. Moreover, 10% CG seed priming improved germination and growth parameters under flooding stress, but the advantages were less significant. In addition, the priming treatment significantly reduced electrolyte conductivity (EC) across all varieties compared to unprimed seeds, indicating improved membrane stability. Overall, 10% CG seed priming was more effective under drought and flooding conditions, demonstrating a potential strategy for enhancing stress tolerance in soybean varieties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。