PARP-1 regulates inflammasome activity by poly-ADP-ribosylation of NLRP3 and interaction with TXNIP in primary macrophages

PARP-1 通过 NLRP3 的聚 ADP 核糖基化以及与原代巨噬细胞中的 TXNIP 相互作用来调节炎症小体活性

阅读:6
作者:Ling-Ya Chiu, Duen-Yi Huang, Wan-Wan Lin

Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) plays an essential role in DNA repair by catalyzing the polymerization of ADP-ribose unit to target proteins. Several studies have shown that PARP-1 can regulate inflammatory responses in various disease models. The intracellular Nod-like receptor NLRP3 has emerged as the most crucial innate immune receptor because of its broad specificity in mediating immune response to pathogen invasion and danger signals associated with cellular damage. In our study, we found NLRP3 stimuli-induced caspase-1 maturation and IL-1β production were impaired by PARP-1 knockout or PARP-1 inhibition in bone marrow-derived macrophages (BMDM). The step 1 signal of NLRP3 inflammasome activation was not affected by PARP-1 deficiency. Moreover, ATP-induced cytosolic ROS production was lower in Parp-1-/- BMDM, resulting in the decreased inflammasome complex assembly. PARP-1 can translocate to cytosol upon ATP stimulation and trigger the PARylation modification on NLRP3, leading to NLRP3 inflammasome assembly. PARP-1 was also a bridge between NLRP3 and thioredoxin-interacting protein (TXNIP) and participated in NLRP3/TXNIP complex formation for inflammasome activation. Overall, PARP-1 positively regulates NLRP3 inflammasome activation via increasing ROS production and interaction with TXNIP and NLRP3, leading to PARylation of NLRP3. Our data demonstrate a novel regulatory mechanism for NLRP3 inflammasome activation by PARP-1. Therefore, PARP-1 can serve as a potential target in the treatment of IL-1β associated inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。