The role of peripheral cannabinoid receptors type 1 in rats with visceral hypersensitivity induced by chronic restraint stress

外周1型大麻素受体在慢性束缚应激性内脏高敏感性大鼠中的作用

阅读:5
作者:Lei Shen, Xiao-Jun Yang, Wei Qian, Xiao-Hua Hou

Aims

This study was designed to investigate the possibility that the enhanced nociceptive responsiveness associated with canabonoid type 1 receptors (CB1Rs) and identify its role in mediating visceral hypersensitivity induced by chronic restraint stress.

Background/aims

This study was designed to investigate the possibility that the enhanced nociceptive responsiveness associated with canabonoid type 1 receptors (CB1Rs) and identify its role in mediating visceral hypersensitivity induced by chronic restraint stress.

Conclusions

Our results suggest there is a key contribution of peripheral CB1Rs involved in the maintenance of visceral hyperalgesia after repeated restraint stress, providing a novel mechanism for development of peripheral visceral sensitization.

Methods

Rats were exposed to daily partial restraint stress or sham partial restraint stress with intraperitoneal injection of the vehicle, CB1R agonist or antagonist for 4 consecutive days. We tested the visceromotor reflex to colorectal distention at day 0 and 5. Reverse-transcription polymerase chain reaction and Western blot were used to assess the expression of CB1Rs.

Results

Intraperitoneal CB1 agonist (ACEA) injection significantly diminished (p < 0.05) the enhanced visceromotor reflex to colorectal distention at day 5 in stressed rats. Change in electromyogram response after ACEA over baseline, at pressure of 40 mmHg (+13.3 +/- 2.2), 60 mmHg (+15.3 +/- 2.8) and 80 mmHg (+17.0 +/- 4.0) were much lower than in the control animals, which were +35.9 +/- 5.1, +41.1 +/- 6.3 and +54.1 +/- 9.6, respectively. Whereas, CB1 antagonist (SR141716A) had an opposite effect. Compared with control group, the change in electromyogram response after SR141716A over baseline was significantly enhanced (p < 0.05) for the distending pressure of 40 mmHg (+56.0 +/- 10.3), 60 mmHg (+74.6 +/- 12.3) and 80 mmHg (+82.9 +/- 11.0), respectively. Reverse-transcription polymerase chain reaction and Western blotting demonstrated the stress-induced up-regulation of colon CB1Rs (p < 0.05). Conclusions: Our results suggest there is a key contribution of peripheral CB1Rs involved in the maintenance of visceral hyperalgesia after repeated restraint stress, providing a novel mechanism for development of peripheral visceral sensitization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。