Na+/K+ -ATPase stabilization by Hsp70 in the outer stripe of the outer medulla in rats during recovery from a low-protein diet

大鼠低蛋白饮食恢复期间外延髓外带中 Hsp70 对 Na+/K+ -ATPase 的稳定作用

阅读:14
作者:María Celeste Ruete, Liliana C Carrizo, Patricia G Vallés

Abstract

A low-protein (LP) diet induces injury from energy depletion in renal epithelial cells. Overexpression of heat-shock proteins has been implicated in the restoration of the cytoskeletal anchorage of Na(+)/K(+)-ATPase. We tested if Hsp70 stabilizes renal Na(+)/K(+)-ATPase attachment to the cytoskeleton from the cortex and the outer stripe of the outer medulla (OSOM) in rats during recovery from a LP diet. Rats were fed with a LP diet (8% protein) for 14 days, and then the rats were recovered with a 24% protein (RP) diet. The control group received a 24% protein (NP) diet. Increased Na(+)/K(+)-ATPase dissociation was demonstrated in soluble fraction from OSOM with lower ATP content as a result of LP diet vs NP. Meanwhile, decreased Hsp70 levels in the same fraction were shown. Translocation of Hsp70 to the cytoskeletal injured fraction associated with stabilization of Na(+)/K(+)-ATPase was shown in OSOM from LP after in vitro co-incubation of the cytoskeletal fraction of LP and non-cytoskeletal fraction of RP. These effects were abolished by the addition of the anti-Hsp70 antibody. Absence of Na(+)/K(+)-ATPase detachment from its cytoskeletal anchorage was demonstrated in proximal duct segments from cortex in LP. Co-immunoprecipitation showed that the amount of Na(+)/K(+)-ATPase co-precipitating with Hsp70 increased in the OSOM as a result of the LP diet. In the cortex tissues from rats fed the LP and the RP diet, the interaction of both proteins were similar to the control groups. Our results indicate that Hsp70 has a critical role in protecting the integrity of the cytoskeletal anchorage of Na(+)/K(+)-ATPase during recovery from ATP-depleted injury resulting from LP in OSOM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。