Multiple pathways to evaluate the immunoprotective effect of Turkeys Herpesvirus recombinant vaccine expressing HA of H9N2

多途径评价表达H9N2 HA的火鸡疱疹病毒重组疫苗的免疫保护效果

阅读:5
作者:Wenhao Yang, Jin Zhang, Jing Dai, Mengjiao Guo, Xiaolong Lu, Ruyi Gao, Kaituo Liu, Min Gu, Shunlin Hu, Xiufan Liu, Xiaoquan Wang, Xiaowen Liu

Abstract

H9N2 avian influenza virus is a significant poultry pathogen that provides internal genes for multiple zoonotic subtypes of avian influenza, presenting a severe threat to public health. The isolation rate of H9N2 in poultry has increased annually in recent years. In this study, a recombinant Herpesvirus of Turkeys (HVT) vaccine expressing H9-HA was constructed using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. In the construction of HVT-EGFP-HA recombinant virus, nonhomologous end joining (NHEJ) is a much more efficient strategy compare to Homology-directed recombination (HDR). HVT-HA demonstrated stability and consistent replication with the parent strain. Subcutaneous injection and in-ovo injection of HVT-HA induced different levels of immune response. Compared to in-ovo injection of HVT-HA, subcutaneous injection induced significantly higher neutralizing serum antibodies. This finding is supported by the significantly higher CD4+ T cell response in Peripheral blood mononuclear cell Peripheral blood mononuclear cell (PBMC) in the subcutaneous injection group. However, in-ovo injection of HVT-HA resulted in significantly higher neutralizing antibodies in the Harderian glands. In addition, it significantly inhibited viral shedding after intranasal exposure to H9N2. This phenomenon could be attributed to the mucosal immunity present in the Hadrian gland. Thus, our findings indicate that the in-ovo injection of the HVT-HA recombinant vaccine is a promising method to inhibit the transmission of H9N2 via the upper respiratory tract in chickens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。