Integrated and Binder-Free Air Cathodes of Co3 Fe7 Nanoalloy and Co5.47 N Encapsulated in Nitrogen-Doped Carbon Foam with Superior Oxygen Reduction Activity in Flexible Aluminum-Air Batteries

氮掺杂碳泡沫封装的 Co3 Fe7 纳米合金和 Co5.47 N 集成无粘合剂空气阴极,在柔性铝空气电池中具有优异的氧还原活性

阅读:7
作者:Min Jiang, Chaopeng Fu, Ruiqi Cheng, Wei Zhang, Tongyao Liu, Ruibin Wang, Jiao Zhang, Baode Sun

Abstract

All-solid-sate Al-air batteries with features of high theoretical energy density, low cost, and environmental-friendliness are promising as power sources for next-generation flexible and wearable electronics. However, the sluggish oxygen reduction reaction (ORR) and poor interfacial contact in air cathodes cause unsatisfied performance. Herein, a free-standing Co3 Fe7 nanoalloy and Co5.47 N encapsulated in 3D nitrogen-doped carbon foam (Co3 Fe7 @Co5.47 N/NCF) is prepared as an additive-free and integrated air cathode for flexible Al-air batteries in both alkaline and neutral electrolytes. The Co3 Fe7 @Co5.47 N/NCF outperforms commercial platinum/carbon (Pt/C) toward ORR with an onset potential of 1.02 V and a positive half-wave potential of 0.92 V in an alkaline electrolyte (0.59 V in sodium chloride solution), which is ascribed to the unique interfacial structure between Co3 Fe7 and Co5.47 N supported by 3D N-doped carbon foam to facilitate fast electron and mass transfer. The high ORR performance is also supported by in-situ electrochemical Raman spectra and density functional theory calculation. Furthermore, the fabricated Al-air battery displays good flexibility and delivers a power density of 199.6 mW cm-2 , and the binder-free and integrated cathode shows better discharge performance than the traditionally slurry casting cathode. This work demonstrates a facile and efficient approach to develop integrated air cathode for metal-air batteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。