The effect of disease associated point mutations on 5β-reductase (AKR1D1) enzyme function

疾病相关点突变对 5β-还原酶 (AKR1D1) 酶功能的影响

阅读:5
作者:Rebekka Mindnich, Jason E Drury, Trevor M Penning

Abstract

The stereospecific 5β-reduction of Δ(4)-3-ketosterols is very difficult to achieve chemically and introduces a 90° bend between ring A and B of the planar steroid. In mammals, the reaction is catalyzed by steroid 5β-reductase, a member of the aldo-keto reductase (AKR) family. The human enzyme, AKR1D1, plays an essential role in bile-acid biosynthesis since the 5β-configuration is required for the emulsifying properties of bile. Deficient 5β-reductase activity can lead to cholestasis and neo-natal liver failure and is often lethal if it remains untreated. In five patients with 5β-reductase deficiency, sequencing revealed individual, non-synonymous point mutations in the AKR1D1 gene: L106F, P133R, G223E, P198L and R261C. However, mapping these mutations to the AKR1D1 crystal structure failed to reveal any obvious involvement in substrate or cofactor binding or catalytic mechanism, and it remained unclear whether these mutations could be causal for the observed disease. We analyzed the positions of the reported mutations and found that they reside in highly conserved portions of AKR1D1 and hypothesized that they would likely lead to changes in protein folding, and hence enzyme activity. Attempts to purify the mutant enzymes for further characterization by over-expression in Escherichia coli yielded sufficient amounts of only one mutant (P133R). This enzyme exhibited reduced K(m) and k(cat) values with the bile acid intermediate Δ(4)-cholesten-7α-ol-3-one as substrate reminiscent of uncompetitive inhibition. In addition, P133R displayed no change in cofactor affinity but was more thermolabile as judged by CD-spectroscopy. When all AKR1D1 mutants were expressed in HEK 293 cells, protein expression levels and enzyme activity were dramatically reduced. Furthermore, cycloheximide treatment revealed decreased stability of several of the mutants compared to wild type. Our data show, that all five mutations identified in patients with functional bile acid deficiency strongly affected AKR1D1 enzyme functionality and therefore may be causal for this disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。