Enhanced NF-κB activity impairs vascular function through PARP-1-, SP-1-, and COX-2-dependent mechanisms in type 2 diabetes

在 2 型糖尿病中,NF-κB 活性增强通过 PARP-1、SP-1 和 COX-2 依赖机制损害血管功能

阅读:5
作者:Modar Kassan, Soo-Kyoung Choi, Maria Galán, Alexander Bishop, Kazuo Umezawa, Mohamed Trebak, Souad Belmadani, Khalid Matrougui

Abstract

Type 2 diabetes (T2D) is associated with vascular dysfunction. We hypothesized that increased nuclear factor-κB (NF-κB) signaling contributes to vascular dysfunction in T2D. We treated type 2 diabetic (db(-)/db(-)) and control (db(-)/db(+)) mice with two NF-κB inhibitors (6 mg/kg dehydroxymethylepoxyquinomicin twice a week and 500 μg/kg/day IKK-NBD peptide) for 4 weeks. Pressure-induced myogenic tone was significantly potentiated, while endothelium-dependent relaxation (EDR) was impaired in small coronary arterioles and mesenteric resistance artery from diabetic mice compared with controls. Interestingly, diabetic mice treated with NF-κB inhibitors had significantly reduced myogenic tone potentiation and improved EDR. Importantly, vascular function was also rescued in db(-)/db(-p50NF-κB-/-) and db(-)/db(-PARP-1-/-) double knockout mice compared with db(-)/db(-) mice. Additionally, the acute in vitro downregulation of NF-κB-p65 using p65NF-κB short hairpin RNA lentivirus in arteries from db(-)/db(-) mice also improved vascular function. The NF-κB inhibition did not affect blood glucose level or body weight. The RNA levels for Sp-1 and eNOS phosphorylation were decreased, while p65NF-κB phosphorylation, cleaved poly(ADP-ribose) polymerase (PARP)-1, and cyclooxygenase (COX)-2 expression were increased in arteries from diabetic mice, which were restored after NF-κB inhibition and in db(-)/db(-p50NF-κB-/-) and db(-)/db(-PARP-1-/-) mice. In the current study, we provided evidence that enhanced NF-κB activity impairs vascular function by PARP-1-, Sp-1-, and COX-2-dependent mechanisms in male type 2 diabetic mice. Therefore, NF-κB could be a potential target to overcome diabetes-induced vascular dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。