Thermochemical process and compact apparatus for concentrating oxygen in extraterrestrial atmospheres: a feasibility study

在外星大气中浓缩氧气的热化学过程和紧凑装置:可行性研究

阅读:14
作者:Asmaa Eltayeb, Lena Klaas, Leonhard Kölz, Josua Vieten, Martin Roeb, Christian Sattler

Abstract

The Martian atmosphere contains 0.16% oxygen, which is an example of an in-situ resource that can be used as precursor or oxidant for propellants, for life support systems and potentially for scientific experiments. Thus, the present work is related to the invention of a process to concentrate oxygen in the oxygen-deficient extraterrestrial atmosphere by means of a thermochemical process and the determination of a suitable best-case apparatus design to carry out the process. The perovskite oxygen pumping (POP) system uses the underlying chemical process, which is based on the temperature-dependent chemical potential of oxygen on multivalent metal oxide, to release and absorb oxygen in response to temperature swings. The primary goal of this work is therefore to identify suitable materials for the oxygen pumping system and to optimize the oxidation-reduction temperature and time, required to operate the system, to produce 2.25 kg of oxygen per hour under the Martian most-extreme environmental conditions and based on the thermochemical process concept. Radioactive materials such as 244Cm, 238Pu and 90Sr are analyzed as a heating source for the operation of the POP system, and critical aspects of the technology as well as weaknesses and uncertainties related to the operational concept are identified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。